
Fifth NASA/Goddard Space Flight Center Conference on
Mass Storage Systems and Technologies

College Park, MD
September 17-19, 1996

Law
re

nce

Liver
m

ore

Nati
onal

Lab
ora

to
ry

UCRL-JC-124611

Cooperative High-Performance Storage in the
Accelerated Strategic Computing Initiative

S. Louis
M. Gary

B. Howard
K. Minuzzo
M. Seager

July 1996

This is a preprint of a paper intended for publication in a journal or proceedings.
Since changes may be made before publication, this preprint is made available
with the understanding that it will not be cited or reproduced without the
permission of the author.

PREPRINT

This paper was prepared for submittal to the

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

Cooperative High-Performance Storage in the Accelerated Strategic
Computing Initiative

Mark Gary, Barry Howard, Steve Louis, Kim Minuzzo, Mark Seager
Lawrence Livermore National Laboratory1

P.O. Box 808
Livermore CA 94550

mgary@llnl.gov
Tel: 510-422-7527
Fax: 510-423-8715

Abstract

The use and acceptance of new high-performance, parallel computing platforms will be
impeded by the absence of an infrastructure capable of supporting orders-of-magnitude
improvement in hierarchical storage and high-speed I/O. The distribution of these high-
performance platforms and supporting infrastructures across a wide-area network further
compounds this problem. We describe an architectural design and phased implementation
plan for a distributed, cooperative storage environment (CSE) to achieve the necessary
performance, user transparency, site autonomy, communication and security features
needed to support the Accelerated Strategic Computing Initiative (ASCI). ASCI is a
Department of Energy (DOE) program attempting to apply terascale platforms and
problem-solving environments (PSEs) toward real-world computational modeling and
simulation problems. The ASCI mission must be carried out through a unified, multi-
laboratory effort, and will require highly secure, efficient access to vast amounts of data.
The CSE provides a logically single, geographically distributed, storage infrastructure of
semi-autonomous cooperating sites to meet the strategic ASCI PSE goal of high-
performance data storage and access at the user desktop.

Introduction

The Accelerated Strategic Computing Initiative (ASCI) [1] is a critical element of the
Department of Energy (DOE) response to recent decisions ending nuclear testing. In the
past, a large part of integrating fundamental science into nuclear weapon safety, reliability,
and performance was accomplished through underground testing. In the future, the
simulation capabilities provided by ASCI will provide much of that integration. The DOE
Science-Based Stockpile Stewardship (SBSS) program, which encompasses ASCI, plans
to build upon a strong foundation of simulation capabilities, non-nuclear testing, and basic
science to assess the performance of nuclear stockpile systems, predict their safety and
reliability, and certify their functionality.

A primary ASCI strategy is to facilitate an unprecedented level of cooperation among the
three DOE Defense Programs (DP) laboratories (Lawrence Livermore, Los Alamos, and

1 This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under contract number W-7405-Eng-48, and supported by DOE Defense
Programs Accelerated Strategic Computing Initiative funding.

Sandia National Laboratories). These three DP labs (Tri-Lab) will share ASCI code
development, computing, storage systems, and communication resources across laboratory
boundaries in joint development efforts, while still maintaining a high degree of local
autonomy. Together with a philosophy of creating a cooperative management environment,
there are several technical strategic thrusts within ASCI. Each of these technical strategies
influences the need for a high-performance, cooperative storage environment.

ASCI is developing new software applications for virtual testing and prototyping that
integrate 3-D capabilities, fine spatial resolution, and accurate physics. These applications
will generate much larger quantities of simulation data (multiple petabytes) than ever
before. Access to other large data collected from non-nuclear testing and historical
underground tests will also be needed to verify and validate results of new applications.
ASCI is pushing the computing industry to develop high-performance computers with
processing speeds and memory capacities thousands-of-times greater than currently
available computers, and tens-to-several-hundred-times greater than the largest computers
likely to result from current trends. Much larger capacities and data transfer rates will be
required from ASCI storage resources to keep up.

ASCI will require an effective problem-solving environment (PSE) to support application
code teams. The PSE provides a robust computing environment where codes may be
rapidly developed. The PSE also provides an infrastructure to allow applications to execute
efficiently on ASCI compute platforms and to allow easy accessibility to terascale
resources from the desktop. This computational infrastructure will consist of local-area and
wide-area high-speed networks, software development and visualization tools, and
advanced storage facilities (see Figure 1).

High Performance
Computing Environment

MPPs
Archival Storage

Scientific Data Management
Parallel I/O

High Speed LAN
Distributed Resource Mgmt

Tri-Lab
Distributed Computing

Network

Encryption
SecureNet

Network Management
DCE Services

Application Development
Environment

Compilers
Debuggers
Profilers

Visualization Tools
Parallel Tools

Secure
High Speed
Wide Area
Network

Figure 1. The ASCI Problem Solving Environment

Motivation

To make effective use of terascale platform and application capabilities being developed in
ASCI, scientists will need to store, access, and manipulate unprecedented amounts of data.
The inability of existing data storage systems and I/O capabilities to perform these tasks are
now being recognized. Recent projects, such as the San Diego Supercomputer Center
initiatives in data-intensive computing and massive data analysis, have started to explore
better architectures for multi-teraFLOP computing, multi-petabyte storage, integrated
databases and archives [2]. Without improvements, users will spend significant time and
effort working around storage problems and I/O bottlenecks, and therefore be unable to
realize gains from the ASCI terascale environment. The ASCI PSE concentrates heavily on
high-performance archival storage, hierarchical storage management, and scalable I/O to
address successful use of data. Other important areas in the PSE, closely related to storage
but outside the scope of this paper, are scientific data management and visualization (i.e.,
tools to aid locating and understanding data), parallel file system advancements (i.e.,
mechanisms for intelligent application use of scalable I/O), and high-speed interconnect
fabrics (i.e., networks to provide efficient local and remote transmission of data).

ASCI is an application-driven effort, and as such, an overall PSE goal is to develop needed
software and deploy necessary hardware to intelligently present designers and developers
with all of the resources they will need. This view of convenient one-stop, black-box
desktop access implies that individual components comprising the overall resource
environment must cooperate. Requirements of cooperative storage differ from those of the
scientific data management and visualization areas of the PSE. Cooperative storage is
primarily a data logistics problem, concerned with how data is moved, shared, supplied,
and stored. In contrast, scientific data management is more accurately a data semantics
problem, concerned with finding and understanding meaningful data. Both are needed to
provide a true end-to-end data management solution within ASCI.

Site A
High Performance

Hierarchical Storage

Site B
High Performance

Hierarchical Storage

Site C
High Performance

Hierarchical Storage

Local
Storage
Network

Locally Used
Storage

Local
Storage
Network

Local
Storage
Network

Global Shared
Storage

WAN WAN

Locally Used
Storage

Global Shared
Storage

Locally Used
Storage

Global Shared
Storage

Local
User

Network

Local
User

Network

Local
User

Network

Figure 2. Integration of Autonomous HSM Systems

In this paper, we concentrate on the data logistics problem. We define cooperative storage
as an interworking group (sometimes called a federation) of autonomous, hierarchical
storage management systems (HSMs), joined to meet terascale computational needs
through common shared vision and coordination, but employing local integration and
administration (see Figure 2). HSMs provide management of a hierarchical set of storage
devices and file stewardship services to its clients. Individual systems tend to view their
resources as local and other systems' resources as remote. Within ASCI, systems will
contribute part of their storage resources to the cooperative ASCI whole in compliance with
well-defined Tri-Lab global policies. At the same time, systems can also provide local
resources that are not sharable, again in agreement with management policy.

Coordination of networked block-data servers to implement a distributed, parallel data
storage system has been investigated in other work, notably the Image Server System
network-distributed data server [3]. Still other projects have explored integration of mass
storage with file systems [4,5]. Unlike those efforts, ASCI attempts to integrate
autonomous HSMs into a cohesive whole across a high-speed WAN, each HSM
composed of multiple servers distributed across a local network. The NASA EOSDIS
Project [6] has similar HSM requirements in its attempt to build a globally distributed,
heterogeneous, autonomous data system for the Earth Sciences community. EOSDIS is
based on a cooperative architecture where data archiving and distribution services can be
configured to achieve a balance between centralized management and distributed authority.

Requirements

There exists a rich literature on the requirements of distributed file systems [7]. In this
section, we investigate critical requirements that an ASCI cooperative model places on
HSMs. Many distributed file system and cooperative HSM requirements overlap due to
common issues of resource sharing and remote access. ASCI will require its terascale
resources to be viewed in uniform ways (i.e., as part of a seemingly single, local, scalable
resource space that can be globally optimized). Scalability becomes especially important as
systems grow more complex. One of the ASCI PSE goals is to bring what appears to be
unlimited storage and processing capacities to the desktop.

Transparency

In a black-box view, users should not be concerned with how, where, or in what format
data is stored. Various transparencies can be provided to reduce or hide the complexity of
system interaction and internal detail, but there may be disadvantages if efficiency is lost in
resource utilization or performance. We discuss some important transparencies for ASCI
below.

Access and location transparency are related. Access transparency (sometimes called
network transparency) hides whether objects or services are local or remote. Location
transparency hides where objects or services are physically located. Both help make a
system easier to use. A related transparency is migration transparency, where users are

unaware that an object or service has moved. These are key requirements of a cooperative
storage design. In many systems, a user often must explicitly know where objects
(typically files) are stored. An example is FTP access to a remote site where, to obtain data,
a user must 1) know where the data is, 2) contact that site explicitly, and 3) login to view or
access files. ASCI’s black-box philosophy will require that the burden of multiple access
methods and needing to specify data location be eliminated or made easier for users and
applications.

A related transparency is data representation transparency, where users are not aware that
different data representations may be used in local and remote parts of the system. FTP
may require the user to specify binary or ASCII for proper data transfer. Although
standard access interfaces such as FTP are required and will be supported by ASCI,
distributed file system interfaces that can better support these transparencies will also
required. An important ASCI requirement is that data stored using a specific type of
interface be accessible by another. For example, a file stored using a local parallel file
system interface should be accessible to the user (at the desktop) through a distributed file
system interface. Note that, although the data may have been stored in parallel, actual
distributed file system access may be serial. The data may also be physically stored in
several different formats throughout the HSM.

Another transparency is naming. We define naming transparency as the ability to obtain a
single namespace view, typically as a directory structure, independent of data location or
access interface. Storage objects should have globally unique identifiers independent of
resource location and access mechanism. Satisfying the naming transparency requirement
presents users (logged into any part of the ASCI cooperative environment) with identical
namespace views of storage resources.

Two other transparencies are replication and administration. Replication transparency hides
the fact that objects or services may be replicated within the system (usually for
performance or reliability reasons). Clients may not necessarily know if objects or services
are replicated, and services may not know if clients are replicated. Administration
transparency provides a management process with the same view of manageable
resources, independent of the location of those resources. This allows administrators to
assemble resources to fulfill user needs without an obligation to know what resources were
local or remote. Such administrative transparency will, of course, be constrained by global
management policies.

Site Autonomy

While transparency eases access and use, maintaining local autonomy or control of local
resources is also important. Some sites will have local policies that they may be required to
enforce, such as security, accounting, scheduling, and system administration. A site may
also need to restrict access to particular data or hardware resources on a need-to-know
basis, or may simply desire a greater degree of control over local assets. There are failure
scenarios where a site may need to isolate itself from the cooperative whole while still
providing service to local users. Likewise, sites need to be able to operate, possibly in a
degraded fashion, when other sites or components of the cooperative are unavailable. To
support these situations, interworking sites must strike a balance between local
management of resources through site-specific policies and continuing to function as a

usable part of the cooperative environment. The introduction of greater autonomy may
result in much more visible component boundaries to users.

Communication and Security

Because extending the reach of scientists from the desktop to Tri-Lab resources is key, an
ASCI cooperative storage infrastructure must not be isolated from the communication and
security infrastructure shared by other ASCI elements. The ASCI communication and
security infrastructure provides services and tools to support creation, use, and
management of distributed applications in a heterogeneous environment. It also provides
services that allow distributed applications to interact securely with a collection of possibly
heterogeneous computers, operating systems, and networks, as if they were a single
system. It is a requirement that cooperative storage work with, and be manageable within,
this infrastructure. It would also be prudent for the HSM’s internal component interactions
to use this same communication and security infrastructure.

Performance

Even if all of the requirements listed above are satisfied, a system must meet minimum
performance requirements for its users. Providing transparency, autonomy, security, and
communication is valueless if the software and hardware resources providing them are
unable to provide data storage and access in acceptable time. For ASCI, performance will
be a dominant requirement.

Architecture

To satisfy the above requirements, the ASCI PSE effort has established a preliminary
architectural vision for a cooperative high-performance storage environment (CSE). This
vision brings together distinct elements of storage to form a cohesive, unified, orderly
whole. The desired result is a logically single, geographically distributed, storage system of
semi-autonomous cooperating sites. The system will be designed and implemented to meet
the goal of high-performance data access at the desktop. In this section, we describe aspects
of a cooperative architecture that target our requirements. We address each area and discuss
the planned architectural approach to satisfy the requirement. ASCI is a multi-year effort,
and therefore a phased implementation approach is planned.

Achieving Transparency

To achieve the transparencies described in the requirements section, our approach uses
interfaces that naturally provide transparency to users, and tie those interfaces through
additional linkage of Tri-Lab name spaces and data spaces. This provides ASCI users of
non-transparent interfaces many of the beneficial properties afforded users of transparent
ones. The CSE will use DFS [8] as a key file system interface. This interface provides
users with a serial interface to storage that satisfies many transparency requirements.
Interfaces to local NFS systems will also exist and be supported by CSE HSMs. We chose
to concentrate on DFS because it is better able to support the wide-area requirements of
ASCI and the PSE middleware infrastructure.

DFS uses a set of cooperating clients and servers to provide geographically separated users
with a single, seamless view of a distributed name and data space. DFS also has enhanced
data caching capability and consistency guarantees. While DFS satisfies several
transparency requirements of ASCI, it lacks an archival back-end needed to support the
petabytes of data generated by ASCI. To address this problem, we plan to exploit an
extended definition of the DMIG DMAPI [9] specification to link DFS with an appropriate
back-end HSM capable of satisfying the large storage requirements of ASCI. An HSM-
DMAPI gateway will provide interoperability and communication between the DFS Server
and the HSM (see Figure 3).

Another deficiency of DFS is that it does not currently satisfy the high-performance,
parallel-access requirements of many ASCI applications and users. Overcoming the serial
performance shortcomings of DFS will be challenging. We plan to investigate ways to
expand the DFS interface for parallel transfer of data, where possible. While we hope to
enhance DFS data transfer performance, we also need to provide other user interfaces
capable of satisfying the performance requirements of ASCI. To satisfy transparency
requirements, these storage interfaces will all need to operate within a common namespace
shared by all user storage interfaces.

The strategy to allow all storage interfaces to view, and operate within, a single namespace
is grounded in two architectural decisions. The first is that the namespaces of interworking
sites will be linked together, thus allowing users to navigate a single global namespace.
This linking will be accomplished by allowing the software that implements naming at
each site to link leaves of its directory structure to points in other site namespaces. This
approximates the idea of a UNIX™ mount, but more accurately mimics a UNIX soft link.

The second architectural decision concerns namespace consistency. Storage interfaces that
have their own namespaces by design (e.g., DFS), must be integrated into the CSE such
that the namespace provides a global namespace view. If interfaces are implemented as
multiple namespaces joined to provide a single view, they must be kept consistent with
other views. This presents a significant challenge. For example, back-ending DFS with an
archival HSM as was done in [5] will not be enough. We require that the DFS namespace
provide users with access to all data (given proper authorization) created by every interface
in the CSE. This means that a file created by a non-DFS parallel interface will need to
appear in the DFS interface's namespace.

Distributed File System
Server

HSM-DMAPI Gateway

DMAPI (DMIG)

Episode File System

DFS Server Software

Hierarchical Storage
Management System

Common
Name and Data

Space

HSM
Client

DFS
Client

Network

Figure 3. Integration of DFS and HSM Name and Data Space

The above architectural decisions lead to a design with location, access, and name
transparencies, but do not necessarily satisfy requirements for administration or replication
transparency. Administrative transparency implies the ability to assemble resources located
across interworking sites into useful configurations, taking advantage of the strengths and
bypassing the weaknesses of each site. Later phases of CSE design encompass linking the
storage system management (SSM) internals of the server components of each site
together and with all server components. This enables construction of hierarchies that span
geographically separated sites. There are also plans for introducing future file and physical
volume replication capabilities into the CSE that can span sites.

Achieving Site Autonomy

Satisfying site autonomy requirements in an architecture that links name spaces and joins
administrative domains is difficult. Our design maximizes site autonomy within a single
system through incorporation of policy modules, and by allowing a site to continue
functioning, albeit in degraded fashion, when disconnected from other participants in the
CSE. Similarly, sites remaining in the CSE are allowed to operate in the absence of one or
more sites.

Policy modules allow enforcement of SSM concerns that are likely to differ from site to
site by isolating local rules or decisions into separate modules that may be implemented or
modified by each site to suit its own needs. The CSE design provides for integration of
policy modules by establishing well-defined interfaces to and from storage service
components. Modification of the main components of the system is not required; only the
policy modules need to change. An example is implementation of accounting. The CSE
maintains a well-defined interface to an accounting policy module. As accounting events
are encountered, policy module interfaces are used to communicate accounting
information. The module that accepts this information will be customized by the site and

will then perform site-specific actions appropriate to log, report, or ignore the information.
The CSE design currently includes policy interfaces for accounting, scheduling, security,
migration and purge and system management. The modeling of policies as general objects
in distributed systems is explored in considerable detail in [10].

Architecting the system to allow independent operation, in the face of communication
failure or other adverse events, relies on how server components of the CSE are linked. If
servers are connected in a way that requires all information to be successfully exchanged
over inter-site communication lines for a server to function, then autonomy will be lost. If
servers are instead connected through simple remote location linking information, more
autonomy is possible. The CSE uses the latter approach. Imagine two name server
components residing within separate sites (see Figure 4). Each name server represents an
autonomous directory structure that may have leaf nodes that are links or pointers to
directory or file resources located in the other name server’s structure. When traversing a
pathname that crosses one of these links, the CSE is designed to realize that the next
component is actually managed on a remote name server and contact that server for
continued parsing of the path name.

Site A

Name
Server A

Site B

Name
Server B

Figure 4. Linked Name Servers at Multiple Sites

Under the above scenario, one can imagine a situation where Name Server B is not
reachable. Site A still has the ability to traverse all of its own namespace, but cannot access
names located in Site B's space. In this case, depending on the distribution of data across
sites, the absence of Site B will degrade access to data, even if names are accessible. This
demonstrates a tradeoff between autonomy and administration transparency. Typically, as
administrative transparency increases, site autonomy decreases. Striking a balance between
these two requirements will affect the eventual implementation. Note that if an HSM is
well designed and thus able to scale within a single site, many difficulties linking multiple
sites will be moot. In the linked name server example above, one could have easily
considered the two name servers to be at a single site, scaled because the namespace was
too large to be supported by a single name server. Single-site name server scalability

requires the ability of pathnames to span local name servers. Thus, solving this problem
addresses many issues concerning multi-site name server cooperation.

Communication and Security Infrastructure

Because the ASCI environment is built on a wide-area fabric of distributed services, it is
important that the CSE function as an integral part of this fabric. In our design, the HSM is
constructed using this fabric to tie together its various distributed components. The ASCI
PSE uses OSF’s Distributed Computing Environment (DCE) as a convenient middleware
layer to tie ASCI PSE components together. DCE provides services and tools that support
the creation, use, and maintenance of distributed applications and servers in a
heterogeneous computing environment. DCE also provides services that allow distributed
applications and servers to interact securely with a collection of possibly heterogeneous
computers, operating systems, and networks as if they were a single system. The CSE
uses these services as the glue between each of its server components as well as for the
mechanism linking HSMs with their clients and other components of the ASCI
environment.

Because much of the work to be done within ASCI is classified and requires the use of
need-to-know boundaries, authorization techniques will be critical to successful information
sharing. The DCE Security Service maintains a replicated registry database that includes
principals, users, groups, organizations, accounts and administrative policies. Sites within
the CSE can make use of this security service by implementing calls to the service within
their site-specific policy modules. Access Control List (ACL) entries in the database are
used to define and grant permissions to an object. Any request by a user or application to
use an object, such as an archival storage device, is accompanied by the requester’s
credentials which are checked against the ACL for that service.

Of equal importance to the authentication and authorization mechanisms provided by DCE
is the security of data itself as they traverse communication networks. The security of
WAN communications between distributed ASCI sites is provided by networks front-
ended by high-performance encryptors, providing NSA-approved encryption of all data
passing between classified ASCI sites.

Achieving Performance

As stated above, the transparencies inherent in the CSE architecture are not really useful if
minimum performance needs of applications and users are not met. If performance is
lacking, users will recognize the difference in speed when accessing data on remote
systems, and as a result will find ways of working around the system to avoid delays,
often at the expense of the system as a whole.

To support the performance requirements of ASCI, the CSE uses a scalable, parallel
architecture to support high-performance data access. Under this design, sites can enhance
performance by adding server components and/or wider stripes of data until a target
performance level is achieved. For example, if a site requires a 100 megabyte/sec transfer
rate for a file, but only has 20 megabyte/sec devices, the CSE allows the site to attain the
desired transfer rate by storing data using a five-wide stripe across multiple devices at a
site.

While the architecture we have chosen provides, in theory, the performance necessary to
satisfy the requirements of ASCI, realizing this goal is highly dependent on additional
advances in networking hardware, protocols, and encryption technology. Without gains in
these areas matching the I/O performance gains seen in storage devices and platforms, the
functionality required by ASCI will not be easily obtainable. The CSE architectural design
and implementation will closely track these disciplines and react as necessary to integrate
advances in these areas as they become available.

Implementation

The ASCI implementation strategy for a CSE focuses heavily on the High Performance
Storage System (HPSS), an on-going effort to develop a scalable, high-performance, HSM
for data-intensive applications and large-scale computers. Coordinated by IBM
Government Systems, three of the principal developers for HPSS are also the three ASCI
DP laboratories: Lawrence Livermore, Los Alamos, and Sandia National Laboratories.
Oak Ridge National Laboratory, other federal agencies, and universities also participate in
HPSS development. From the beginning, a major motivation for HPSS was to develop a
high-speed storage system providing scalability to meet demands of new high-
performance computer applications where vast amounts of data are generated, and to meet
the needs of a national information infrastructure [11].

HPSS has a scalable, networked-centered architecture [12] and is based on the concepts of
the IEEE Mass Storage System Reference Model, Version 5 [13]. The architecture
includes a high-speed network for data transfer and a separate network for control. The
control network uses OSF/DCE Remote Procedure Call technology. In an actual
implementation, control and data transfer networks may be physically separate or shared
[14]. Another key feature of HPSS is support for both parallel and sequential I/O. The
parallel I/O architecture is designed to scale as technology improves by using data striping
and multiple data movers [15]. HPSS was designed to support data transfers from
hundreds of megabytes up to multiple gigabytes per second. File size scalability must meet
the needs of billions of data sets, some potentially terabytes in size, for total storage
capacities in petabytes.

The scalability features of HPSS are important for enabling distribution and cooperation of
storage resources. The ability to introduce multiple, distributed servers as needed into an
HPSS implementation is critical for both performance and autonomy reasons.
Distributable HPSS servers allow us to obtain a geographically distributed single-system
view required by ASCI applications and users. Because HPSS supports network-attached
peripherals [16,17] and third-party data transfer capabilities, new hardware can easily be
added to provide incremental performance scalability. Each ASCI site maintains a degree
of local autonomy and can tailor data rates and capacities needed for its local requirements
and for resources shared across the Tri-Lab environment. The tailoring of storage resources
and the access to them can be controlled and used through the HPSS Class of Service
structures [18] and device hierarchy structures. Class of Service provides the control and
management flexibility needed to implement a truly distributed storage hierarchy. HPSS
also supports policy modules and uses a management-by-policy philosophy in its storage
system management design.

The ASCI PSE working group defines a four-phase approach to realize a fully cooperative
storage environment. These phases, described in the next sections, are:

• Independent HPSS systems linked via an encrypted WAN
• Independent HPSS systems with a single OSF/DCE DFS name space
• Cooperative distributed systems linked at the internal server level
• Cooperative distributed systems with single system/management view

Phase I

The first phase establishes independent autonomous HPSS systems at each of the Tri-Lab
sites. Each site will operate a stand-alone HPSS system with the only linkage being a high
speed encrypted WAN connecting each site (see Figure 5). Over this WAN, users will be
able to use explicit interfaces such as FTP (assuming they are granted remote privileges) to
communicate with remote sites. No transparency will be provided for remote access, but
site autonomy will be more or less total. During this phase, significant planning and
coordination will be undertaken to ensure that the site policies and DCE configurations at
each site do not preclude any cooperation necessary when migrating to future
implementation phases.

LANL HPSS LLNL HPSS SNL HPSS

Local Servers and
Storage Hierarchies

Local Servers and
Storage Hierarchies

Local Servers and
Storage Hierarchies

WAN WANLocal
LLNL

Network

Local
LANL

Network

Local
SNL

Network

Figure 5. Phase I - Independent HPSS Systems

Phase II

In Phase II, the Tri-Lab sites will attain linkage of name spaces and gain some access
transparency, using DFS. Each of the sites will support a DFS server or servers that are
back-ended by HPSS (see Figure 6). The DFS namespace will export the view of each
site's files to other sites that have linked their DFS servers to the global DFS space. Files
created by DFS clients will be created and stored in the HPSS system that back-ends the
DFS server where the new file is placed. Users will be able to access files at all sites using

DFS, but will have to explicitly contact the location that stores a file to access the resource
using any interface other than DFS. Thus in Phase II, the only interface that can see and
access all of the storage resources at all sites without explicit login to remote sites will be
DFS. Although the DFS interface provides functional transparency to users in this phase,
users will be able to discern latency when accessing remote files. Note that data stored in
parallel at a remote site will be accessible serially through DFS and other serial interfaces.
Phase II introduces the first transparency aspects to the CSE while maintaining all of the
autonomy provided in Phase I.

SNL HPSSLANL HPSS LLNL HPSS

WAN WAN

HPSS-DMAP Gateway

DMAPI (DMIG)

Episode File System

DFS Server Software

HPSS-DMAP Gateway

DMAPI (DMIG)

Episode File System

DFS Server Software

HPSS-DMAP Gateway

DMAPI (DMIG)

Episode File System

DFS Server Software

Local
LLNL

Network

Local
LANL

Network

Local
SNL

Network

ASCI Cooperative Storage Environment

Figure 6. Phase II - Linked HPSS Namespaces with DFS

Phase III

Phase III builds on Phase II by linking the Name Servers of each site's HPSS system and
allowing clients to seamlessly communicate with other sites for data access when
necessary. The Phase III feature making this possible is implementation of links within a
namespace pointing to a directory or file in the namespace of a remote HPSS system (see
Figure 7). Parsing a pathname that crosses a link between two sites will be performed
transparently, as will remote data access. This provides the ability for all CSE user
interfaces to automatically and transparently view or access the namespace of all Tri-Lab
sites.

In Phase III, given adequate networking performance, many of our transparency
requirements are met while still maintaining a high level of site autonomy. Because each

site still runs its own HPSS system, it can function independently, possibly in degraded
fashion, when other Tri-Lab sites are unreachable. In such a failure scenario, all accesses to
files or names stored at remote sites will fail. Because users will be allowed to use remote
resources, Tri-Lab sites will have some common aspects of storage system management.
While this in-common management does not preclude use of unique policy modules at
each site, it will be necessary to work out issues such as accounting for remote user
accesses. While Phase III goes far toward the final vision of a single distributed HSM, it
does not achieve administrative transparency.

Phase IV

Phase IV maintains all functionality of Phase III, but adds administrative transparency
across the Tri-Lab sites. This addition will be made possible through linking and
coordination of the Storage System Management components of each site. This allows an
administrator at one site, given adequate privileges, to assemble storage resources existing
at multiple sites into storage hierarchies that take optimum advantage of the array of
capability and capacity devices distributed throughout the Tri-Lab environment. The
addition of administrative transparency capabilities yields a single logical HSM from a
management view, but results in some sacrifice of site autonomy as hierarchies are built
requiring resources at multiple sites to all be available in order to provide service. The level
of autonomy lost will be related to how much inter-site sharing of resources occurs.

How far the CSE implementation should proceed is a matter of debate. Accomplishing
Phase III may satisfy those CSE requirements deemed most critical without sacrificing too
much site autonomy. On the other hand, Phase IV, or a slightly enhanced version of Phase
III implementing rudimentary administrative transparency, may provide ASCI with more
optimal capabilities. A third perspective is to de-emphasize site autonomy. This position
argues that a geographically distributed, yet single HPSS system is best for ASCI (note
that Phase IV as presented is a logically single combination of independent HPSS
systems). Time, experience, and the performance of remote data transfers will determine
the proper choice.

LANL HPSS LLNL HPSS

WAN WAN

Name
Server

Name
Server

SNL HPSS

Name
Server

ASCI Cooperative Storage Environment

Local
LLNL

Network

Local
LANL

Network

Local
SNL

Network

Figure 7. Phase III - Linked HPSS Servers Across Sites

Current Status

We plan to continue the long-standing DOE collaboration to develop HPSS with assistance
from ASCI funding. HPSS Release 3, containing over 500 integration and system tests
and approximately 200,000 lines of executable code, was released on June 30, 1996. Work
continues in 1996 on the next deliveries of HPSS (known as Release 3+ and 4). In 1997,
all three ASCI DP sites plan to deploy Release 3+ in production classified and unclassified
computing environments. These three systems will initially function independently as
described in the Phase I description above. Work on DFS/HPSS integration is on-going to
meet the implementation described above as Phase II, as well as work to meet some of the
scalability requirements of Phase III. Work is also underway at Lawrence Livermore to
provide support in HPSS for the emerging MPI-IO interface standard [19,20] as a basis
for parallel I/O portability in ASCI applications.

Conclusions

ASCI is an application-driven program. The fundamental goal of ASCI's Problem Solving
Environment program is to give users the tools they need to do their job. This means
ensuring that the power of the ASCI application/platform combination can be readily
applied to the challenges of science-based stockpile stewardship. This will require the
development of a balanced, supporting infrastructure far more capable than any available
today. In particular, hierarchical storage management, archival storage, and parallel I/O
must scale together with the growth in platform capability.

We have discussed the critical requirements that an ASCI cooperative model places on a
storage infrastructure. ASCI will need terascale storage resources to be available from the
desktop and viewed as a black-box. Users should not be concerned with how, where, or in

what format data is stored. Several transparencies must be provided to reduce or hide the
complexity of system interaction and internal detail, but must be balanced such that
efficiency is not lost in resource utilization or performance. There are critical site autonomy,
communication, and security issues that must also be considered.

We described an architectural design and phased implementation plan for a distributed,
cooperative storage environment (CSE) to achieve the necessary performance, user
transparency, site autonomy, communication and security features needed to support ASCI
requirements. The CSE provides a logically single, geographically distributed, storage
infrastructure of semi-autonomous cooperating sites. The ASCI implementation strategy
focuses heavily on integration of the High Performance Storage System (HPSS), a
scalable, high-performance system for data-intensive applications and large-scale
computers, and OSF/DCE DFS, a popular distributed file system. While DFS satisfies
several transparency requirements of ASCI, it lacks the archival back-end and performance
needed to support the petabytes of data generated by ASCI. We have shown how we plan
to exploit the DMIG DMAPI interface to provide DFS with an appropriate back-end
capable of satisfying ASCI's large storage requirements, and a phased implementation
approach satisfying the cooperative storage requirements of ASCI.

References

[1] Accelerated Strategic Computing Initiative (ASCI) Program Plan, Final Draft, DOE
Defense Programs, May 1996.

[2] R. W. Moore, “A Petabyte/Teraflops System: Meeting Future Data Needs,” San
Diego Supercomputer Center Gather/Scatter, Vol. 11, No. 4, December 1995.

[3] B. Tierney, W. Johnston, L. Chen, H. Herzog, G. Hoo, G. Jin, J. Lee and D. Rotem,
“Distributed Parallel Data Storage Systems: A Scalable Approach to High Speed
Image Servers,” Proceedings of ACM Multimedia ‘94, October 1994.

[4] C. Antonelli and P. Honeyman, “Integrating Mass Storage and File Systems,”
Technical Report 93-2, University of Michigan Center for Information and
Technology Integration, Ann Arbor, MI, April 15, 1993.

[5] J. Nydick, K. Benninger, B. Bosley, J. Ellis, J. Goldick, C. Kirby, M. Levine, C.
Maher and M. Mathis, “An AFS-based Mass Storage System at the Pittsburgh
Supercomputer Center,” Proceedings of the Eleventh IEEE Symposium on Mass
Storage Systems, Monterey, CA, October 7-10, 1991.

[6] B. Kobler, J. Berbert, P. Caulk and P. Hariharan, “Architecture and Design of
Storage and Data Management for the NASA Earth Observing System Data and
Information System (EOSDIS),” Proceedings of the Fourteenth IEEE Computer
Society Mass Storage Systems Symposium, Monterey, CA, September 11-14, 1995.

[7] E. Levy and A. Silberschatz, “Distributed File Systems: Concepts and Examples,”
ACM Computing Surveys, Vol. 22, No. 4, December, 1990.

[8] K. Kazar, B. Leverett, O. Anderson, V. Apostolides, B. Bottos, S. Chutani, C.
Everhart, W. Mason, S. Tu and E. Zayas, “DEcorum File System Functional
Overview,” Summer USENIX Conference Proceedings, Anaheim, CA, June 1990.

[9] Data Management Interfaces Group, “Interface Specification for the Data
Management Application Programming Interface,” Version 2.3a Draft X/Open
Submission, January 1996.

[10] J. Moffett and M. Sloman, “The Representation of Policies as System Objects,”
Proceedings of the Conference on Organizational Computer Systems (COCS '91),
Atlanta, GA, November 5-8, 1991.

[11] R. Coyne, H. Hulen, and R. Watson, “The High Performance Storage System,”
Proceedings Supercomputing '93, Portland, OR, November 15-19, 1993.

[12] D. Teaff, R. Coyne and R. Watson, “The Architecture of the High Performance
Storage System (HPSS),” Fourth NASA GSFC Conference on Mass Storage
Systems and Technologies, College Park, MD, March 28-30, 1995.

[13] R. Garrison, et al. (eds.), Reference Model for Open Storage Systems
Interconnection: Mass Storage Reference Model Version 5, IEEE Storage System
Standards Working Group (P1244), September 1994.

[14] R. Hyer, R. Ruef and R. Watson, “High Performance Direct Network Data Transfers
at the National Storage Laboratory,” Proceedings of the Twelfth IEEE Symposium on
Mass Storage Systems, Monterey, CA, April 26-29, 1993.

[15] R. Watson and R. Coyne, “The Parallel I/O Architecture of the High Performance
Storage System,” Proceedings of the Fourteenth IEEE Computer Society Mass
Storage Systems Symposium, Monterey, CA, September 11-14, 1995.

[16] R. Van Meter, “A Brief Survey of Current Work on Network Attached Peripherals,”
abstract published in ACM Operating Systems Review, January 96, or available at
http://www.isi.edu/~rdv/netstation/nap-research/napr-extab/napr-extab.html.

[17] D. Wiltzius, “Network-attached peripherals (NAP) for HPSS/SIOF.”
http://www.llnl.gov/liv_comp/siof/siof_nap.html.

[18] S. Louis, and D. Teaff, “Class of Service in the High Performance Storage System,”
Third IFIP TC6 International Conference on Open Distributed Processing,
Brisbane, Australia, February 21-24, 1995.

[19] T. Jones, R. Mark, J. Martin. J. May, E. Pierce and L. Stanberry, “An MPI-IO
Interface to HPSS,” Fifth NASA GSFC Conference on Mass Storage Systems and
Technologies, College Park, MD, September 17-20, 1996.

[20] MPI-IO Committee, MPI-IO: A Parallel File I/O Interface for MPI, Version 0.5.
http://lovelace.nas.nasa.gov/MPI-IO.

